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In studies of flow fields around bodies, moving with large supersonic 
velocities, the influence of viscosity and heat-conductivity may be 
significant. In some flight regimes, this influence manifests itself as 
an interaction between the boundary layer and the outer inviscid flow 
[ 1 I. At still higher flight speeds it may force the investigation of 
the whole flow field on the basis of the complete equations of motion of 
a viscous heat-conducting gas. In the present paper, several flows of a 
viscous heat-conducting gas are studied on the basis of the full Navier- 
Stokes equations for the special case of an infinite Mach number. If  the 
density and the speed of the undisturbed flow are kept constant as the 
Mach number grows without limit, so that the temperature, pressure, and 

enthalpy approach zero, then, as is well known [ 2 1, a limiting flow 
field is reached, which is independent of Mach number. This result re- 
presents a generalization to the viscous heat-conducting gas of the 
known gasdynamical independence principle of flows at very high speeds 

[ 3 1. In this sense, a flow of a viscous heat-conducting gas at very 
high speeds can be viewed as a flow with vanishing temperature in the 
undisturbed region. 

At the outset we note the main characteristic of such a flow, namely, 
that in this case we always have a surface (front) which divides the 
region of the disturbed flow from that filled with undisturbed gas, 
rather than a configuration in which the disturbances die out asymptotic- 
ally at infinity. The explanation lies in the fact that the viscosity 
as well as the heat-conductivity of the gas are such functions of tempe- 
rature that they decrease and vanish as the temperature decreases and 
vanishes. 

First we study some general properties of steady hypersonic flows 

around bodies downstream of strong shock waves. Then we investigate some 
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self-similar unsteady gas flows in which the self-similar character is 
determined by their special state, namely, by the vanishing temperature 
in the undisturbed region. Formally, this behavior is connected with the 
fact that the number of governing parameters of the problem is reduced 
14 1, Throughout, the gas is assumed to be perfect, with constant 
specific heats, constant Prandtl number, and a constant power of tempe- 
rature (or enthalpy) in the expression for viscosity. 

1. Structure of the strong shock wave. ‘Ihe simplest type of 
flow of a viscous heat-conducting gas appears to be that of the uniform 
steady flow, homogeneous at infinity. He.re belongs the well-known flow 
in the shock wave which propagates into a gas at rest [S 1. Let us in- 
vestigate this flow in the case of an infinite Mach number so that we 
may clarify the nature of the flow in the neighborhood of the front and 
obtain several important relationships. Let the speed in the undisturbed 
flow be equal to VW and the density to p,, while the pressure p,, the 

temperature T,, and the enthalpy 4 are equal to zero. For the sake of 
generality, we take the angle a between the normal to the front (Fig. 1) 
and the velocity vector V, to be nonzero (oblique 
shock). We choose the Cartesian x-axis normal to 
the shock front. We denote the velocity components 
as u, v, w, and the pressure, density and enthalpy 

as P, P ad h respectively. We introduce the vis- 
cosity dependence in the form 

p = Ch” 

where C is a constant. From the dimensional para- 
meters p,, V, and C which characterize the prob- 
lem, we can construct a length I 

(1.2) 
Fig. 1. 

(Its physical meaning will be considered later.) Let us now introduce 
the dimensionless independent variable x0 and dimensionless unknown vari- 
ables 

The equations of a steady uniform flow can be represented in terms of 

these variables as follows: 
C/poll9 --= 0, 

0 0 du” , rip” 4 (1 
c/z’ PI1 dz” I dx”--Tdz’ - (/p ?K) 
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Here u is the Prandtl number and y = C,/C,, the ratio of the specific 
heats of the gas. The boundary conditions of this problem read: 

u" = p" = 1, p" = 12" = 0 for x0 4 - cc (1.5) 

and the solution is bounded as x0 + + m. 

The lateral velocity in the whole flow field is constant, u" = 1. We 
note that Equation (1.4) and the boundary conditions (1.51, expressed 
in dimensionless variables, do not contain the parameter a. lhis fact 
can be viewed as a law of similarity of flows in shock waves of large 
intensity. 

The system (1.4), as is known L6 I, can be fully integrated when 
u = 3/4 and n = 1. In this case, the particular solution satisfying 
(1.5) has the form (see Appendix A) 

X0 = 4 (1 + E) [(I + E) (1 - U’) + & (1 + E) In SC + I+] 

T---i 
(1.Q 

&=y+l > 

This solution is displayed in Fig. 2, where 

U = u IV, cos a, X=x/lcosa 

Inspection of the relationships discloses that the disturbed region 
is separated from the uniform free stream by a surface which has been 
made to coincide with x = 0 by a choice of the unessential arbitrary 
constant of integration. lhis surface, in the present case n = 1, is 
also the surface of discontinuity of the derivatives, which take on non- 
zero values at n = + 0. 

In the more general case of an arbitrary positive value of II, the un- 
known functions can be represented in the neighborhood of the front 

1' I (x + 0) as follows (see Appendix A): 
1. 0 

a,&,’ L -.------------------ 

(l-7) 

u” z 1 -(g x”)lhi , p” z 1 + (g xy 

,p ~ 
( 
2 xo'1!n 

J 
, 

0 po 
~ 

1.0 X 
TJ- 

( 41 
350 > lilZ 

Fig. 2. In this manner, the behavior of the 
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solutions appear to be singular in the vicinity of the front in the 
general case. These results can well be compared with the analogous con- 
clusions concerning the behavior of the solutions of nonlinear equations 
of heat flow in an infinite medium when in the initial state the medium 
has zero temperature [7 1. 

Let us now clarify the physical meaning of the quantity I, which was 
introduced as a characteristic length. It is always proportional to the 
molecular mean free path evaluated behind a normal shock as I: -) + 
fact, the mean free path can be expressed in terms of macroscopic 
tities [8 1 

oo.In 
quan- 

Hence, utilizing (1.11, (1.21, (1.31, and substituting the values of 
the functions now known, we find 

I= c-r + llPn 
zn--lyn v/(7 - 1) 2-c 

1” (y = 1.4, I z 3.661’when II = 1) (1.8) 

2. 'Ihe flow behind a body. Let us now turn to the study of the 
steady hypersonic flow of a viscous heat-conducting gas behind a body of 
finite dimensions. We shall restrict ourselves to the cases of plane 
flows and linear variations of viscosity with temperature (enthalpy) 
p = Ch. Again, we introduce dimensionless independent variables and di- 
mensionless unknown functions 

The equations of motion, continuity, heat flux, and state then have 
the form 
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Here and elsewhere we drop the superscript o in the designation of 
dimensionless quantities. ' 

Let us focus on the nature of the flow far downstream from the body 
x >> L, where L is a characteristic dimension of the body*. Since in 
the particular case of flow with 
M,+ 00 the disturbed region is 
circumscribed by a sharp front, let P,L 
us first investigate the character 
of the flow near the front, i.e. the 
structure of the shock wave for 
x >> L. The inclination z of the 
front relative to the undisturbed 

g&z& 

stream direction can be considered Fig. 3. 
small, when x is large (Fig. 3). 

From the results of Section 1, it 
follows that for r << 1, the following assessments of magnitudes are 
valid in the neighborhood of the front 

Y - TX, u-l, V-T, p-l, p-t2, h-r2 (2.3) 

For the increments in these quantities we have 

Ax - 1, Ay- z, Au- v2, Av - T, Ap - 1, Ap--‘, Ah- T2 (2.4) 

If we estimate the order of magnitudes of the terms in (2.2) on the 
basis of (2.3) and (2.4), and if we keep only the dominant terms, we 
arrive at approximate systems of equations: 

'Ihe system of equations (2.6) is independent of (2.5) and, as is 
easily verified by changing x into the time variable t, is identical with 
the full system of equations of a uniform unsteady flow of a viscous 

l Naturally, the condition 1 << L must also be satisfied, so that we 
may apply the equations corresponding to a continuous medium. 
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heat-conducting gas. In this manner, we have established a complete equi- 
valence between the flow in the shock wave at large distances downstream 
of a body and the uniform unsteady flow of a gas in the neighborhood of 
a front which moves according to the relation d Y/ dt = 7 (t). 

We note that the ratio of the terms neglected in (2.5) and (2.6) re- 
lative to the terms kept is of the order 5’; this determines the relative 

error of the results. 

Let us now turn to the study of the flow of the inner region of the 
wake. ‘lhe lateral dimensions of this region are on the order of Ay - 
y  - TX. In this region, therefore, we can neglect not only the terms 
dropped from (2.2) in the derivation of the system (2.51, (2.6), but also 
all the viscous and heat-conductive terms, the ratio of which, with re- 

spect to the inertial terms, is clearly on the order of l/n. However, 

this state of affairs does not occur in the vicinity of the x-axis, where 
the role of viscosity and heat-conductivity is seen to be rather important. 
In fact, if we equate, as is usual, the magnitudes of the viscous and 

inertial terms in the first of Equations (2.2), we find that the influence 
of viscosity cannot 
of the order 

‘lhe magnitude of the lateral velocity component in this flow region 
is clearly of the order 

be neglected-near the x-axis up to a lateral distance 

d- TI/, (2.7) 

(2.8) 

‘Ihe preceding estimates allow the simplification of the equations 
(2.2) in this inner region to the form 

(2.10) 

The ratio of the neglected terms in this equation to those retained is 
2 of the order T . 

We shall not investigate here the question of integration of the re- 
sulting system of approximate equations (2.10). For later developments, 
the essential feature is the fact that the system (2.10) does not contain 
any terms which were left out in the derivation of Equations (2.6). Hence, 
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Equations (2.6) can be viewed as characterizing the asymptotic behavior 
of the whole flow field at large distances downstream of the body. 
Therefore, the previously noted analogy with the unsteady uniform flow 
is also valid for the whole flow field in the wake. In physical terms, 
this means that at large distances downstream of a body which moves in a 
viscous heat-conducting gas with a very large supersonic speed, the “law 
of plane sections q * holds, in a manner similar to that for the case of 
inviscid and nonconducting gas [ 9 1 . In the central region of the wake, 
near the x-axis, the main influence on the transverse flow is exerted by 
heat conduction. ‘Ihat, of course, does not mean that the role of visco- 
sity here is altogether unimportant; in accordance with (2.9), viscosity 
exerts the dominant influence on the variation of the x-component of 
velocity. 

3. The aerodynamic drag of the body. For the complete speci- 
fication of the flow field at large downstream distances it is necessary 
to establish its dependence on the aerodynamic resistance of the body 
and on the net heat flux across the boundary. ‘Ibis is not a difficult 
task if we utilize the demonstrated principle of equivalence between the 
flow in the wake and the one-dimensional unsteady flow of the gas. In 
this analogy, the corresponding unsteady flow of the gas is clearly iso- 
energetic, i.e. occurs as a result of a strong plane explosion. Ihe 
energy E of the explosive charge, per unit area, needs to be equated to 
the sum of the aerodynamic drag X of the body, and the net integrated 
heat flow Q, per unit time, across the body boundaries: 

E=X+ Q (3.1) 

(‘Ibe magnitudes E, X and Q are expressed in mechanical units and are 
dimensionless when referred to P,V”~ 1. ‘Ihe detailed derivation of the 
formula is given in Appendix B.) 

On the other hand, the total energy of the unsteady gas flow at time 
t can be expressed as an integral of the internal and kinetic energies 
of the disturbed fluid elements: 

(3.2) 

Here Y(t) specifies the propagation of the shock front. 

In this manner, the known gasdynamic analogy between hypersonic flows 
at large distances from the body (large compared to the characteristic 

l Translator’s Note:See [ 1 I, p. 36. 
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dimensions of the body) and the one-dimensional unsteady flow behind a 
strong shock [9 I is generalized to the case of the flow of a viscous 
heat-conducting gas in the particular case of ac infinitely large Mach 
number. It is important to emphasize that the flow in the wake does not 

depend at all on the nature of the aerodynamic drag, i.e. on the relative 
contributions due to pressure and due to friction. Thus, for instance, 
the flow field at large distances downstream from two insulated flat 
plates (Q = 0). generating equal drag, would be identical even if one of 
the plates were aligned with the flow and the other normal to it. 

These results permit a closer assessment of the behavior of the 
viscous wake near the axis. Let us use the well-known law of propagation 
of plane strong shock waves in inviscid gases: 

l.(2) - 1’ J (3.3) 

as an approximation to the propagation in the case at hand. 'Ihen, we ob- 
tain 

for the characteristic inclination of the front for large x-values. 
Hence, with the aid of (2.7) we find that the viscous part of the wake 
spreads as 

n lJ - :,.' '8 (3.3) 

Finally, we note that the system (2.6) and the boundary conditions on 
the front (p = 1, p = h = u = 0) are invariant under the transformations 

x = k, y = "q, v = ar,, p = a2p,, p = pl, h=n’h, (3.6) 

With the following choice of the constant in (3.6): 

a xx E" (3.7) 

the constancy of the total energy in the disturbed region states: 

(33) 

'lhe relations (3.6) and (3.7) determine the law of similarity for 
flows with different values of energy E. In accordance with this law, 
the width of the disturbed region and the magnitude of the velocity of 
the flow vary as E1i3, while the pressure and temperature vary as E213. 

4. Self-similar motions of a viscous heat-conducting gas. 
Should the temperature of the gas in the undisturbed region be zero, the 
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only thermodynamic parameters determining the state of the gas in that 
region would be the density p,. Another basic dimensional parameter is 
given by the constant C in the dependence of viscosity on enthalpy (1.2). 
Ihe dimensions of these quantities are 

where L, T and M stand for the unit measures of length, time and mass, 
respectively. If, amongst the other characteristic parameters of a given 
problem, no combination can be found with dimensions independent of 
p, and C, then the problem is self-similar, as is well known [4 1. We 
focus on the dimensions of the ratio p,/C, so as to eliminate the units 
of mass 

(4.2) 

It follows that the following cases will have self-similar character: 

a) uniformly accelerated motion of an insulated body, which has no 
characteristic length (infinite flat plate, cone, wedge), in the case 
n = 3/2, since then the ratio (4.2) has the dimensions of the accelera- 
tion [a]= LTT2; 

b) rotation of insulated axisynunetric conical bodies with n = 1, since 
then (4.2) has the dimensions of an angular velocity [St I = T-' ; 

c) point explosion with spherical symmetry, with n = l/6, since then 
(4.2) has the same dimensions as 

where E represents the energy of the explosion. 

Let us investigate the first two cases of body motion in more detail. 
The case of the self-similar solution for the strong explosion has been 
carried out by Bam-Zelikovich [4 1. 

a) Uniformly accelerated motion of a flat plate. Let us study the 
simplest of the problems of the first type, namely, the motion of a 
viscous heat-conducting gas induced by an infinite flat plate which starts 
accelerating uniformly from rest at a given instant. Ihe acceleration 
vector is inclined at an angle a relative to the surface of the flat 
plate (Fig. 4). 'Ihe x-axis of a Cartesian system of coordinates is taken 
coincident with the flat plate at the initial instant. Clearly, the 
motion depends only on two independent variables, y and t. Since, among 
the characteristic parameters of the problem there are none with 
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dimensions of length and time, the only possible dimensionless combina- 
tion of the independent variables and of these parameters is 

(4.3) 

‘Ihe unknown functions of the problem are the components of the velo- 
city u and v, the pressure p, the density p, and the enthalpy h. It can 
be seen that their only possible functional 
ties with the independent variables are of the 
form 

I 

Y 
p, d ----------_____ # 

u = atV(q), 2, = atV(q) (4.4) a 

p’= P,a2t2P(q), P = p,R(q), h = n2t2 H(q) 

According to the preceding analysis, the 
dependence of viscosity on enthalpy takes the 
form 

p = Ch’fa = Ca3 t3 H’!z (q) (4.5) 

Fig. 4. 

Substitution of Equations (4.31, (4.4) and (4.5) into the full set of 
the equations for the motion of a viscous heat-conducting gas leads to a 
system of ordinary differential equations for the dimensionless functions 
II, V, P, R, H, which are not given here in detail. ‘Ihe dimensionless 
parameter of the problem is clearly 

It characterizes the effect of viscosity and heat-conductivity of the 
gas and resembles the Reynolds number. 

Let us now turn to the boundary conditions of the problem. At the in- 
sulated plate we must satisfy the conditions of no slip and of zero 
heat-flux. We can easily verify that these conditions, expressed in terms 
of the dimensionless variables, are 

U(1) = cos a, V(1) = sin a, H’(1) = 0 (4.6) 

In the undisturbed region the temperature is zero. As has been shown, 
this region is therefore separated from the region of disturbed motion 

by a front* which obviously propagates according to the similarity law 

l The mathematical necessity of the existence of the front can be 
established by assuming the opposite; the extension of the asymptotic 
solutions to infinity then leads to a contradiction. 
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Y(t) = qo q (4.7) 

Here q0 is a constant which must be determined. Clearly, the boundary 
conditions at the front have the form 

U(q0) = V(qo) = P(q0) = H(q0) = 0, H(llo) = 1 (4.8) 

‘lhe conditions (4.6) and (4.8) must fully determine the solution of 
the boundary-value problem, including the specification of the constant 

10. 

b) The motion of a viscous heat-conducting gas induced by the rota- 
tion of a conical surface. Let us examine the self-similar motion of the 
second type associated with a uniform rotation of an axisymmetric conical 
surface around its axis. Let us place the origin of the spherical co- 
ordinates r, 8, 16 at the vertex of the cone (Fig. 5) and make its axis 
of synrnetry coincide with 8 = 0. We shall again assume that the rotation 
with constant angular velocity a begins from rest at time t = 0 and that 
the temperature of the undisturbed medium is zero. Clearly, the motion 
in question can depend only on the three independent variables r, 8 and 
t. Since the only characteristic parameter of the problem, which does 

Fig. 5. 

not contain the dimension of mass, is the 
angular velocity, the dependence on the 
variable r can be found in an explicit form. 
For the dimensionless time variable let us 
take 

z= Qt (4.9) 

The unknown functions of the problem are 
the components of the velocity vector V,, 
V, and V4, the pressure p, the density p 
and the gas enthalpy h. We can easily see 
that the only possible form of the depend- 
ence of these functions on the independent 
variables is 

v, = QrU(0 , z), v, = QrV(B, 7) (4.10) 

V, = i2r W(e , t), p = P,cw P(B) 7) 

P = P,w3 > Q, h = swlY(e , z) 

As has been established earlier, the viscosity will depend linearly 
on enthalpy 

p =: Ch = CQ2’r2H(O~) (4.11) 
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Upon substitution of (4.9)) (4.10) and (4.11) into the equations of 
motion of a viscous heat-conducting gas, we obtain a system of partial 
differential equations in two independent variables for the dimensionless 
functions (4.10). ‘Ihe conditions at the boundary 0 = 8,, which is heat- 
insulated, are 

W = sin fJO (4.12) 

It is also necessary to satisfy conditions on the front which moves 
according to the law 0 = 8, (7 ), yet to be determined. These conditions 

are 

u = I/ = 11’ = p z.z f]  = 0, R=l (4.13) 

‘Ibe system of boundary conditions (4.12) and (4.13) must fully deter- 
mine the solution of the problem, including the unknown function f3,(7 1. 

We note that from (4.13) it follows that the front which separates 
the disturbed region from that of the undisturbed gas spreads as a 
conical surface with a vertex at the vertex of the rotating cone. Further- 

more, from the form of the solutions (4.10) it follows that the velocity 
components grow linearly with r, the pressure and enthalpy as r2, while 
the density remains constant along any ray issuing from the origin. 

We have examined some special problems associated with the motion of 
a viscous heat-conducting gas at very high supersonic speeds. However, 
the results permit some general deductions concerning the nature of the 
problem of flow around arbitrary bodies as M, + CO. The most important 
feature of any flow with infinite Mach number is the appearance of a 
frontal surface, which separates the disturbed flow field from the region 
of the uniform stream. Consequently, the conditions of asymptotic decay 
of all disturbances at infinity are always replaced by boundary conditions 
on the surface of the front. The behavior of the solution in the vicinity 
of this front is singular and can be obtained relatively simply by 
examining the equations of motion in a small neighborhood of the front. 
In this process, any segment of the front can be considered as flat and 
its velocity (in the direction of its normal) as constant during a small 

interval of time. The reduction of the problem of flow around a body 
with Mm + m to a boundary-value problem in a finite domain facilitates 
its solution by approximate methods (as in the case of flows of ideal 
gases around the body). 

APPEINDIX A. The integration of the system of equations (1.4) in the 
special case of Prandtl number 3/4 can be carried out relatively simply. 
The first of these equations together with the boundary condition (1.5) 
yields 
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pOuo = 1 (A.1) 

Integrating the second equation we find 

u” + po = $ bon .E$ + 1 (A.21 

The third equation can be rewritten with the aid of the second in the 
form 

Its only particular solution which satisfies (1.5) is 

(-4.3) 

Substituting into (A. 2) the expression (A. 4) for ho and 

(A.5) 

we obtain an equation in u” alone: 

(A.61 

Its integration in the case n = 1 is elementary and leads to (1.6). 
In the case of an arbitrary n > 0, the quantity. u” near the front can be 
expressed as 

u” z 1 - axu (A.71 

Substituting this expression into (A.6) and keeping the dominant terms, 
we find 

1 CL=- 
n ’ 

(‘4.8) 

Equation (1.7) then follows. 

APPENDIX B. The full equations of motion of a viscous heat-conducting 
gas (2.2) can be written using the divergence operator and then expressed 
in the form of the following integrals over closed contour surfaces: 

$ - pu dx + pu dy = 0 (B.1) 
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- pvh _ pv u” - pv c + h ah + hu & + hrc av 
2 2 0 ay ay 

x ++hv$+ +hvgjdz+ 

+ jpuh + PU f + P ~~-$~-gh~~+~hu~-hv~-hv~)dy=O 
ay ay 

Let us choose for the contour of integration the contour ABCDEF (Fig. 
6). with A at the vertex of the front AE and with the closing section DE 

located far downstream of the body BC. The full resistance of the body, 
X, is given by the integral of the normal and tangential stresses pro- 
jected in the x-direction: 

and the net flux of heat across the boundaries of the body by the inte- 
gral 

(B.3, 

Taking into account the conditions at the surface of the body and in 
the undisturbed flow, we obtain 

Y 

Jr=--’ : 
Sr 

(IL4) 

0 0 

pub + PU f 

v? 12 ah 
+ ,m---Y--- 

2 5 dx 

1. 

+ $- hu ?& - hr g - 1~2. g) t/y - \ d!/ (13.5) 

0 

Let us rewrite the condition of conservation of mass in the form 

t 

ym 

Y c Y 

s 
pu rly = dy 

F E 
s 

(B.6) 

_._.__ -_-.- .-.-.-.- 0 0 

When, in accordance with the esti- 
mates of Section 2, we neglect in these 

7’ ,, ’ z‘ 
A 6 c D 

equations the terms of higher order, we 
find 

Fig. 6. 
03.7) 
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On the other hand, the right-hand side of (B.7) is easily seen to re- 
present the total energy of the equivalent uniform unsteady motion of 
the gas. This validates Equation (3.1). We note that the ratio of the 
terms neglected in (B. 4), (B-5) and (B.6) to those which were kept is of 
the order r2. 
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